Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant Pathol J ; 40(2): 225-332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606451

RESUMEN

The microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.003%) in the LA cultivar, whereas was in a significantly higher ratio in the TB cultivar (1.82%), reflecting the susceptibility to BLB of these cultivars. Of special interest was the genus Acholeplasma presented in the BLB-resistant LA cultivar at a high relative abundance (22.32%), however, was minor in the BLB-sensitive TB cultivar (0.09%), raising a question about its roles in controlling the Xanthomonas low in the LA cultivar. It is proposed that Acholeplasma once entered the host plant would hamper other phytopathogens, i.e. Xanthomonas, by yet unknown mechanisms, of which the triggering of the host plants to produce secondary metabolites against pathogens could be a testable hypothesis.

2.
Front Plant Sci ; 15: 1272326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481398

RESUMEN

Rice blast and bacterial leaf blight, are major disease, significantly threatens rice yield in all rice growing regions under favorable conditions and identification of resistance genes and their superior haplotypes is a potential strategy for effectively managing and controlling this devastating disease. In this study, we conducted a genome-wide association study (GWAS) using a diverse set of 147 rice accessions for blast and bacterial blight diseases in replications. Results revealed 23 (9 for blast and 14 for BLB) significant marker-trait associations (MTAs) that corresponded to 107 and 210 candidate genes for blast and BLB, respectively. The haplo-pheno analysis of the candidate genes led to the identification of eight superior haplotypes for blast, with an average SES score ranging from 0.00 to 1.33, and five superior haplotypes for BLB, with scores ranging from 1.52cm to 4.86cm superior haplotypes. Among these, superior haplotypes LOC_OS12G39700-H4 and LOC_Os06g30440-H33 were identified with the lowest average blast scores of 0.00-0.67, and superior haplotype LOC_Os02g12660-H39 exhibited the lowest average lesion length (1.88 - 2.06cm) for BLB. A total of ten accessions for blast and eight accessions for BLB were identified carrying superior haplotypes were identified. These haplotypes belong to aus and indx subpopulations of five countries (Bangladesh, Brazil, India, Myanmar, and Pakistan). For BLB resistance, eight accessions from six countries (Bangladesh, China, India, Myanmar, Pakistan, and Sri Lanka) and four subpopulations (aus, ind1A, ind2, and ind3) were identified carrying superior haplotypes. Interestingly, four candidate genes, LOC_Os06g21040, LOC_Os04g23960, LOC_Os12g39700, and LOC_Os01g24640 encoding transposon and retrotransposon proteins were among those with superior haplotypes known to play a crucial role in plant defense responses. These identified superior haplotypes have the potential to be combined into a single genetic background through haplotype-based breeding for a broader resistance spectrum against blast and bacterial blight diseases.

3.
Braz. j. biol ; 842024.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469390

RESUMEN

Abstract Rice is a widely consumed staple food for a large part of the worlds human population. Approximately 90% of the worlds rice is grown in Asian continent and constitutes a staple food for 2.7 billion people worldwide. Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae is one of the devastating diseases of rice. A field experiment was conducted during the year 2016 and 2017 to investigate the influence of different meteorological parameters on BLB development as well as the computation of a predictive model to forecast the disease well ahead of its appearance in the field. The seasonal dataset of disease incidence and environmental factors was used to assess five rice varieties/ cultivars (Basmati-2000, KSK-434, KSK-133, Super Basmati, and IRRI-9). The accumulated effect of two year environmental data; maximum and minimum temperature, relative humidity, wind speed, and rainfall, was studied and correlated with disease incidence. Average temperature (maximum & minimum) showed a negative significant correlation with BLB disease and all other variables; relative humidity, rainfall, and wind speed had a positive correlation with BLB disease development on individual varieties. Stepwise regression analysis was performed to indicate potentially useful predictor variables and to rule out incompetent parameters. Environmental data from the growing seasons of July to October 2016 and 2017 revealed that, with the exception of the lowest temperature, all environmental factors contributed to disease development throughout the cropping season. A disease prediction multiple regression model was developed based on two-year data (Y = 214.3-3.691 Max T-0.508 Min T + 0.767 RH + 2.521 RF + 5.740 WS), which explained 95% variability. This disease prediction model will not only help farmers in early detection and timely management of bacterial leaf blight disease of rice but may also help reduce input costs and improve product quality and quantity. The model will be both farmer and environmentally friendly.


Resumo O arroz é um alimento básico amplamente consumido por grande parte da população humana mundial. Aproximadamente 90% do arroz do mundo é cultivado no continente asiático e constitui um alimento básico para 2,7 bilhões de pessoas em todo o mundo. O crestamento bacteriano das folhas (BLB) causado por Xanthomonas oryzae pv. oryzae é uma das doenças devastadoras do arroz. Um experimento de campo foi realizado durante os anos de 2016 e 2017 para investigar a influência de diferentes parâmetros meteorológicos no desenvolvimento do BLB, bem como o cálculo de um modelo preditivo para prever a doença bem antes de seu aparecimento em campo. O conjunto de dados sazonais de incidência de doenças e fatores ambientais foi usado para avaliar cinco variedades/cultivares de arroz (Basmati-2000, KSK-434, KSK-133, Super Basmati e IRRI-9). O efeito acumulado de dados ambientais de dois anos; temperatura máxima e mínima, umidade relativa do ar, velocidade do vento e precipitação pluviométrica foram estudados e correlacionados com a incidência da doença. A temperatura média (máxima e mínima) apresentou correlação significativa negativa com a doença BLB e todas as outras variáveis; umidade relativa, precipitação e velocidade do vento tiveram uma correlação positiva com o desenvolvimento da doença BLB em variedades individuais. A análise de regressão stepwise foi realizada para indicar variáveis preditoras potencialmente úteis e para descartar parâmetros incompetentes. Os dados ambientais das safras de julho a outubro de 2016 e 2017 revelaram que, com exceção da temperatura mais baixa, todos os fatores ambientais contribuíram para o desenvolvimento da doença ao longo da safra. Um modelo de regressão múltipla de previsão de doença foi desenvolvido com base em dados de dois anos (Y = 214,3-3,691 Max T-0,508 Min T + 0,767 RH + 2,521 RF + 5,740 WS), que explicou 95% de variabilidade. Este modelo de previsão de doenças não só ajudará os agricultores na detecção precoce e gestão atempada da doença bacteriana das folhas do arroz, mas também pode ajudar a reduzir os custos de insumos e melhorar a qualidade e a quantidade do produto. O modelo será agricultor e ambientalmente amigável.

4.
Braz. j. biol ; 84: e259259, 2024. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1364517

RESUMEN

Rice is a widely consumed staple food for a large part of the world's human population. Approximately 90% of the world's rice is grown in Asian continent and constitutes a staple food for 2.7 billion people worldwide. Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae is one of the devastating diseases of rice. A field experiment was conducted during the year 2016 and 2017 to investigate the influence of different meteorological parameters on BLB development as well as the computation of a predictive model to forecast the disease well ahead of its appearance in the field. The seasonal dataset of disease incidence and environmental factors was used to assess five rice varieties/ cultivars (Basmati-2000, KSK-434, KSK-133, Super Basmati, and IRRI-9). The accumulated effect of two year environmental data; maximum and minimum temperature, relative humidity, wind speed, and rainfall, was studied and correlated with disease incidence. Average temperature (maximum & minimum) showed a negative significant correlation with BLB disease and all other variables; relative humidity, rainfall, and wind speed had a positive correlation with BLB disease development on individual varieties. Stepwise regression analysis was performed to indicate potentially useful predictor variables and to rule out incompetent parameters. Environmental data from the growing seasons of July to October 2016 and 2017 revealed that, with the exception of the lowest temperature, all environmental factors contributed to disease development throughout the cropping season. A disease prediction multiple regression model was developed based on two-year data (Y = 214.3-3.691 Max T-0.508 Min T + 0.767 RH + 2.521 RF + 5.740 WS), which explained 95% variability. This disease prediction model will not only help farmers in early detection and timely management of bacterial leaf blight disease of rice but may also help reduce input costs and improve product quality and quantity. The model will be both farmer and environmentally friendly.


O arroz é um alimento básico amplamente consumido por grande parte da população humana mundial. Aproximadamente 90% do arroz do mundo é cultivado no continente asiático e constitui um alimento básico para 2,7 bilhões de pessoas em todo o mundo. O crestamento bacteriano das folhas (BLB) causado por Xanthomonas oryzae pv. oryzae é uma das doenças devastadoras do arroz. Um experimento de campo foi realizado durante os anos de 2016 e 2017 para investigar a influência de diferentes parâmetros meteorológicos no desenvolvimento do BLB, bem como o cálculo de um modelo preditivo para prever a doença bem antes de seu aparecimento em campo. O conjunto de dados sazonais de incidência de doenças e fatores ambientais foi usado para avaliar cinco variedades/cultivares de arroz (Basmati-2000, KSK-434, KSK-133, Super Basmati e IRRI-9). O efeito acumulado de dados ambientais de dois anos; temperatura máxima e mínima, umidade relativa do ar, velocidade do vento e precipitação pluviométrica foram estudados e correlacionados com a incidência da doença. A temperatura média (máxima e mínima) apresentou correlação significativa negativa com a doença BLB e todas as outras variáveis; umidade relativa, precipitação e velocidade do vento tiveram uma correlação positiva com o desenvolvimento da doença BLB em variedades individuais. A análise de regressão stepwise foi realizada para indicar variáveis preditoras potencialmente úteis e para descartar parâmetros incompetentes. Os dados ambientais das safras de julho a outubro de 2016 e 2017 revelaram que, com exceção da temperatura mais baixa, todos os fatores ambientais contribuíram para o desenvolvimento da doença ao longo da safra. Um modelo de regressão múltipla de previsão de doença foi desenvolvido com base em dados de dois anos (Y = 214,3-3,691 Max T-0,508 Min T + 0,767 RH + 2,521 RF + 5,740 WS), que explicou 95% de variabilidade. Este modelo de previsão de doenças não só ajudará os agricultores na detecção precoce e gestão atempada da doença bacteriana das folhas do arroz, mas também pode ajudar a reduzir os custos de insumos e melhorar a qualidade e a quantidade do produto. O modelo será agricultor e ambientalmente amigável.


Asunto(s)
Oryza , Temperatura , Plagas Agrícolas , Humedad
5.
Artículo en Inglés | MEDLINE | ID: mdl-37462829

RESUMEN

Xanthomonas oryzae causes tremendous damage in rice plants (Oryza sativa L). Therefore, this study is focused on siderophore-producing Bacillus albus (CWTS 10) for managing BLB disease caused by X. oryzae. Both B. albus and its crude siderophore (methanolic and diethyl ether) extracts inhibited X. oryzae (10-12 mm). Fourier transform infrared spectroscopy (FTIR) analysis of the extracts indicated the presence of catecholate siderophore functional groups. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of antimicrobial compounds such as 2-deoxystreptamine, miserotoxin, fumitremorgin C, pipercide, pipernonaline, gingerone A, and deoxyvasicinone. Complete genome sequencing revealed the gene clusters for antibiotic, siderophore, antibacterial, antifungal, and secondary metabolite production. An in vivo study revealed that bacteria (CWTS 10) and their siderophore extracts effectively inhibited X. oryzae. The mode of application of bacterial or siderophore extracts in terms of DI and DSI percentage was as follows: soak method > inoculation method > spray method. In addition to providing enhanced antagonistic activity, there was a significant increase in root and shoot length and weight (wet and dry) of treated plants compared to control plants challenged with X. oryzae. Thus, the results clearly indicate that siderophore-producing B. albus and its siderophore extracts strongly inhibited X. oryzae. However, further field experiments are required before being formulated to protect rice crops from X. oryzae.

6.
Pestic Biochem Physiol ; 193: 105447, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37248016

RESUMEN

Bacterial leaf blight (BLB) pathogen, Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial pathogen, which jeopardizes the sustainable rice (Oryza sativa L.) production system. The use of antibiotics and conventional pesticides has become ineffective due to increased pathogen resistance and associated ecotoxicological concerns. Thus, the development of effective and sustainable antimicrobial agents for plant disease management is inevitable. Here, we investigated the toxicity and molecular action mechanisms of bioengineered chitosan­iron nanocomposites (BNCs) against Xoo using transcriptomic and proteomic approaches. The transcriptomic and proteomics analyses revealed molecular antibacterial mechanisms of BNCs against Xoo. Transcriptomic data revealed that various processes related to cell membrane biosynthesis, antioxidant stress, DNA damage, flagellar biosynthesis and transcriptional regulator were impaired upon BNCs exposure, which clearly showing the interaction of BNCs to Xoo pathogen. Similarly, proteomic profiling showed that BNCs treatment significantly altered the levels of functional proteins involved in the integral component of the cell membrane, catalase activity, oxidation-reduction process and metabolic process in Xoo, which is consistent with the results of the transcriptomic analysis. Overall, this study suggested that BNCs has great potential to serve as an eco-friendly, sustainable, and non-toxic alternative to traditional agrichemicals to control the BLB disease in rice.


Asunto(s)
Quitosano , Oryza , Xanthomonas , Transcriptoma , Quitosano/farmacología , Quitosano/metabolismo , Hierro/farmacología , Hierro/metabolismo , Proteómica/métodos , Xanthomonas/metabolismo , Antibacterianos , Oryza/metabolismo , Enfermedades de las Plantas/microbiología
7.
Front Microbiol ; 13: 1034779, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304956

RESUMEN

Bacterial leaf blight caused by Gram-negative pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive bacterial diseases on rice. Due to the resistance, toxicity and environmental issues of chemical bactericides, new biological strategies are still in need. Although peptaibols produced by Trichoderma spp. can inhibit the growth of several Gram-positive bacteria and plant fungal pathogens, it still remains unclear whether peptaibols have anti-Xoo activity to control bacterial leaf blight on rice. In this study, we evaluated the antibacterial effects of Trichokonins A (TKA), peptaibols produced by Trichoderma longibrachiatum SMF2, against Xoo. The in vitro antibacterial activity analysis showed that the growth of Xoo was significantly inhibited by TKA, with a minimum inhibitory concentration of 54 µg/mL and that the three TKs in TKA all had remarkable anti-Xoo activity. Further inhibitory mechanism analyses revealed that TKA treatments resulted in the damage of Xoo cell morphology and the release of intracellular substances, such as proteins and nucleic acids, from Xoo cells, suggesting the damage of the permeability of Xoo cell membrane by TKA. Pathogenicity analyses showed that the lesion length on rice leaf was significantly reduced by 82.2% when treated with 27 µg/mL TKA. This study represents the first report of the antibacterial activity of peptaibols against a Gram-negative bacterium. Thus, TKA can be of a promising agent in controlling bacterial leaf blight on rice.

8.
Plant Pathol J ; 38(5): 490-502, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36221921

RESUMEN

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) disease in rice (Oryza sativa L.) and it is among the most destructive pathogen responsible for severe yield losses. Potential bacterial biocontrol agents (BCAs) with plant growth promotion (PGP) abilities can be applied to better manage the BLB disease and increase crop yield, compared to current conventional practices. Thus, this study aimed to isolate, screen, and identify potential BCAs with PGP abilities. Isolation of the BCAs was performed from internal plant tissues and rhizosphere soil of healthy and Xoo-infected rice. A total of 18 bacterial strains were successfully screened for in vitro antagonistic ability against Xoo, siderophore production and PGP potentials. Among the bacterial strains, 3 endophytes, Bacillus sp. strain USML8, Bacillus sp. strain USML9, and Bacillus sp. strain USMR1 which were isolated from diseased plants harbored the BCA traits and significantly reduced leaf blight severity of rice. Simultaneously, the endophytic BCAs also possessed plant growth promoting traits and were able to enhance rice growth. Application of the selected endophytes (BCAs-PGP) at the early growth stage of rice exhibited potential in suppressing BLB disease and promoting rice growth.

9.
Plants (Basel) ; 11(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406897

RESUMEN

Cytokinin glucosyltransferases (CGTs) are key enzymes of plants for regulating the level and function of cytokinins. In a genomic identification of rice CGTs, 41 genes with the plant secondary product glycosyltransferases (PSPG) motif of 44-amino-acid consensus sequence characteristic of plant uridine diphosphate (UDP)-glycosyltransferases (UGTs) were identified. In-silico physicochemical characterisation revealed that, though the CGTs belong to the same subfamily, they display varying molecular weights, ranging from 19.6 kDa to 59.7 kDa. The proteins were primarily acidic (87.8%) and hydrophilic (58.6%) and were observed to be distributed in the plastids (16), plasma membrane (13), mitochondria (5), and cytosol (4). Phylogenetic analysis of the CGTs revealed that their evolutionary relatedness ranged from 70-100%, and they aligned themselves into two major clusters. In a comprehensive analysis of the available transcriptomics data of rice samples representing different growth stages only the CGT, Os04g25440.1 was significantly expressed at the vegetative stage, whereas 16 other genes were highly expressed only at the reproductive growth stage. On the contrary, six genes, LOC_Os07g30610.1, LOC_Os04g25440.1, LOC_Os07g30620.1, LOC_Os04g25490.1, LOC_Os04g37820.1, and LOC_Os04g25800.1, were significantly upregulated in rice plants inoculated with Rhizoctonia solani (RS), Xoo (Xanthomonas oryzae pv. oryzae) and Mor (Magnaporthe oryzae). In a qRT-PCR analysis of rice sheath tissue susceptible to Rhizoctonia solani, Mor, and Xoo pathogens, compared to the sterile distilled water control, at 24 h post-infection only two genes displayed significant upregulation in response to all the three pathogens: LOC_Os07g30620.1 and LOC_Os04g25820.1. On the other hand, the expression of genes LOC_Os07g30610.1, LOC_Os04g25440, LOC_Os04g25490, and LOC_Os04g25800 were observed to be pathogen-specific. These genes were identified as the candidate-responsive CGT genes and could serve as potential susceptibility genes for facilitating pathogen infection.

10.
J Otol ; 17(1): 54-58, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35140760

RESUMEN

Preservation of low-frequency residual hearing is very important for combined electro-acoustic stimulation after cochlear implantation. However, in clinical practice, loss of low-frequency residual hearing often occurs after cochlear implantation and its mechanisms remain unclear. Factors affecting low-frequency residual hearing after cochlear implantation are one of the hot spots in current research. Inflammation induced by injury associated with cochlear implantation is deemed to be significant, as it may give rise to low-frequency residual hearing loss by interfering with the blood labyrinth barrier and neural synapses. Pathological changes along the pathway for low-frequency auditory signals transmission may include latent factors such as damage to neuroepithelial structures, synapses, stria vascularis and other ultrastructures. In this review, current research on mechanisms of low-frequency residual hearing loss after cochlear implantation and possible roles of inflammatory responses are summarized.

11.
Braz J Microbiol ; 53(1): 19-32, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35001350

RESUMEN

Bacterial leaf blight (BLB) disease, caused by Xanthomonas oryzae pv. oryzae (Xoo), causes major annual economic losses around the world. Inorganic copper compounds and antibiotics are conventionally used to control BLB disease. They often cause environmental pollution, contributing to adverse effects on human health. Therefore, research is now leading to the search for alternative control methods. Tea tree oil (TTO) is obtained from a traditional medicinal plant, Melaleuca alternifolia, with antibacterial properties. In this study, we found that TTO showed antibacterial activity against Xoo with a minimum inhibitory concentration (MIC) of 18 mg/ml. These antagonistic activities were not limited only to planktonic cells, as further studies have shown that TTO effectively eradicated sessile cells of Xoo in both initial and mature biofilms. Furthermore, it was also observed that TTO reduced various key virulence properties of Xoo, such as swimming, swarming motility, and the production of extracellular polymeric substances, xanthomonadin, and exoenzymes. TTO triggered ROS generation with cell membrane damage as an antibacterial mode of action against Xoo. The in silico study revealed that 1,8-cineole of TTO was effectively bound to two essential proteins, phosphoglucomutase and peptide deformylase, responsible for the synthesis of EPS and bacterial survival, respectively. These antibacterial and anti-virulence activities of TTO against Xoo were further confirmed by an ex vivo virulence assay where TTO significantly reduced the lesion length caused by Xoo on rice leaves. All these data concluded that TTO could be a safe, environment-friendly alternative approach for the comprehensive management of BLB disease.


Asunto(s)
Oryza , Aceite de Árbol de Té , Xanthomonas , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas , Humanos , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Aceite de Árbol de Té/farmacología , Virulencia
12.
ACS Chem Neurosci ; 13(1): 151-157, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34918902

RESUMEN

BACKGROUND: Three-dimensional fluid-attenuated inversion recovery sequence magnetic resonance imaging (3D-FLAIR MRI) has been used in the diagnosis of inner ear diseases. However, the relevance of 3D-FLAIR MRI appearances with multiple features and prognosis of patients with idiopathic sudden sensorineural hearing loss (ISSNHL) remains unclear. METHODS: This study was a retrospective trial. We recruited 1300 patients with unilateral ISSNHL hospitalized from May 2017 to January 2019. They were divided into four groups according to their 3D-FLAIR MRI appearances: normal (n = 739), inner ear hemorrhage (n = 218), increased protein content (n = 288), and blood-labyrinth barrier damage (n = 55). The correlation between 3D-FLAIR MRI appearances and the degree or type of deafness of the participants was analyzed. RESULTS: There was a statistical difference in the deafness side (p < 0.001) and vestibular dysfunction (p < 0.001) among the four groups. There was a statistical difference in the duration of treatment (p < 0.001) and the incidence of dizziness or vertigo (p < 0.001) for patients among these groups. The degree of deafness in the patients in the inner ear hemorrhage group was significantly more severe than that of the patients in the other three groups (p < 0.001). CONCLUSION: 3D-FLAIR MRI appearances were correlated with the prognosis of patients with ISSNHL.


Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva Súbita , Pérdida Auditiva Sensorineural/diagnóstico por imagen , Pérdida Auditiva Súbita/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Estudios Retrospectivos
13.
Plants (Basel) ; 10(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34685953

RESUMEN

Bacterial leaf blight (BLB) is caused by Xanthomonas oryzae pv. oryzae and is a major cause of rice yield reductions around the world. When diseased, plants produce a variety of metabolites to resist pathogens. In this study, the various defense metabolites were quantified using high-performance liquid chromatography (HPLC) after Xoo inoculation in a 120 Cheongcheong/Nagdong double haploid (CNDH) population. Quantitative trait locus (QTL) mapping was conducted using the concentration of the plant defense metabolites. HPLC analyzes the concentration of substances according to the severity of disease symptoms. Searching for BLB resistance candidate genes by applying this analysis method is very effective when mapping related genes. These resistance genes can be mapped directly to the causative pathogens. A total of 17 metabolites were detected by means of HPLC analysis after Xoo inoculation in the 120 CNDH population. QTL mapping of the metabolite concentrations resulted in the detection of the BLB resistance candidate gene, OsWRKYq6, in RM3343 of chromosome 6. OsWRKYq6 has a very high homology sequence with WRKY transcription factor 39, and when inoculated with Xoo, the relative expression level of the resistant population was higher than that of the susceptible population. Resistance genes have previously been detected using only phenotypic change data. In this study, resistance candidate genes were detected using the concentration of metabolites produced in plants after inoculation with pathogens. This newly developed analysis method can be used to effectively detect and identify genes directly involved in disease resistance for future studies.

14.
Pest Manag Sci ; 77(10): 4383-4392, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33969944

RESUMEN

BACKGROUND: Tobacco mosaic virus (TMV) is one of destructive plant viruses, causing serious economic losses in the world. Using antiviral proteins or elicitors to inhibit viral infection or promote plant immunity is one of the efficient strategies against TMV. Our previous study identified that the fermentation broth of Brevibacillus laterosporus strain B8 showed strong antiviral activity against TMV. However, the active antiviral ingredient is still unclear. RESULTS: Here, BLB8 (B. laterosporus strain B8 protein, BLB8), an antiviral protein from B. laterosporus strain B8 was isolated and characterized. BLB8 showed protective, inactive and curative effects against TMV, and the inhibition rate reached up to 63%, 83% and 55%, respectively. BLB8 infiltrated around the infection site of the recombinant virus TMV-GFP inhibited the systemic extend and movement of TMV. Pretreatment of the bottom leaves with BLB8 inhibited the spread and accumulation of TMV in upper systemic leaves. Furthermore, BLB8 caused hypersensitive response (HR) in a dose-dependent way, promoted H2 O2 accumulation, and induced the expression of defense-relative genes in Nicotiana benthamiana. CONCLUSION: The antiviral protein BLB8 from B. laterosporus strain B8 effectively inhibits TMV infection in inactivation, protective and curative effects through triggering plant immunity in tobacco. Therefore, the present study provides a new antiviral agent for prevention and control of viral disease. © 2021 Society of Chemical Industry.


Asunto(s)
Virus del Mosaico del Tabaco , Antivirales/farmacología , Brevibacillus , Enfermedades de las Plantas , Inmunidad de la Planta
15.
Mol Biol Rep ; 48(1): 467-474, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33394228

RESUMEN

The use of resistant (R) genes is the most effective strategy to manage bacterial leaf blight (BLB) disease of rice. Several attempts were made to incorporate R genes into susceptible rice cultivars using marker-assisted backcross breeding (MABB). However, MABB relies exclusively on PCR for foreground selection of R genes, which requires expensive equipment for thermo-cycling and visualization of results; hence, it is limited to sophisticated research facilities. Isothermal nucleic acid amplification techniques such as loop-mediated isothermal amplification (LAMP) assay do not require thermo-cycling during the assay. Therefore, it will be the best alternative to PCR-based genotyping. In this study, we have developed a LAMP assay for the specific and sensitive genotyping of seven BLB resistance (R) genes viz., Xa1, Xa3, Xa4, Xa7, Xa10, Xa11, and Xa21 in rice. Gene-specific primers were designed for the LAMP assay. The LAMP assay was optimized for time, temperature, and template DNA concentration. For effective detection, incubation at 60 °C for 30 min was optimum for all seven R genes. A DNA intercalating dye ethidium bromide and a calorimetric dye hydroxynaphthol blue was used for result visualization. Further, sensitivity assay revealed that the LAMP assay could detect R genes at 100 fg of template DNA compared to 1 ng and 10 pg, respectively, in conventional PCR and q-PCR assays. The LAMP assay developed in this study provides a simple, specific, sensitive, robust, and cost-effective method for foreground selection of R genes in the resistance breeding programs of resource-poor laboratory.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes prv/genética , Oryza/genética , Enfermedades de las Plantas/genética , Genotipo , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Oryza/crecimiento & desarrollo , Oryza/microbiología , Fitomejoramiento , Enfermedades de las Plantas/microbiología
16.
Pathogens ; 9(3)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110981

RESUMEN

Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo. In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity.

17.
Immunogenetics ; 72(1-2): 9-24, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31741010

RESUMEN

Among the genes with the highest allelic polymorphism and sequence diversity are those encoding the classical class I and class II molecules of the major histocompatibility complex (MHC). Although many thousands of MHC sequences have been deposited in general sequence databases like GenBank, the availability of curated MHC sequences with agreed nomenclature has been enormously beneficial. Along with the Immuno Polymorphism Database-IMunoGeneTics/human leukocyte antigen (IPD-IMGT/HLA) database, a collection of databases for curated sequences of immune importance has been developed. A recent addition is an IPD-MHC database for chickens. For many years, the nomenclature system for chicken MHC genes has been based on a list of standard, presumed to be stable, haplotypes. However, these standard haplotypes give different names to identical sequences. Moreover, the discovery of new recombinants between haplotypes and a rapid increase in newly discovered alleles leaves the old system untenable. In this review, a new nomenclature is considered, for which alleles of different loci are given names based on the system used for other MHCs, and then haplotypes are named according to the alleles present. The new nomenclature system is trialled, first with standard haplotypes and then with validated sequences from the scientific literature. In the trial, some class II B sequences were found in both class II loci, presumably by gene conversion or inversion, so that identical sequences would receive different names. This situation prompts further suggestions to the new nomenclature system. In summary, there has been progress, but also problems, with the new IPD-MHC system for chickens.


Asunto(s)
Pollos/genética , Bases de Datos Factuales , Inmunogenética , Complejo Mayor de Histocompatibilidad/genética , Complejo Mayor de Histocompatibilidad/inmunología , Polimorfismo Genético , Terminología como Asunto , Animales
18.
Immunogenetics ; 71(10): 647-663, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31761978

RESUMEN

The classical class I and class II molecules of the major histocompatibility complex (MHC) play crucial roles in immune responses to infectious pathogens and vaccines as well as being important for autoimmunity, allergy, cancer and reproduction. These classical MHC genes are the most polymorphic known, with roughly 10,000 alleles in humans. In chickens, the MHC (also known as the BF-BL region) determines decisive resistance and susceptibility to infectious pathogens, but relatively few MHC alleles and haplotypes have been described in any detail. We describe a typing protocol for classical chicken class I (BF) and class II B (BLB) genes based on a hybridization method called reference strand-mediated conformational analysis (RSCA). We optimize the various steps, validate the analysis using well-characterized chicken MHC haplotypes, apply the system to type some experimental lines and discover a new chicken class I allele. This work establishes a basis for typing the MHC genes of chickens worldwide and provides an opportunity to correlate with microsatellite and with single nucleotide polymorphism (SNP) typing for approaches involving imputation.


Asunto(s)
Genes MHC Clase II/genética , Genes MHC Clase I/genética , Hibridación de Ácido Nucleico/métodos , Polimorfismo Genético , Análisis de Secuencia de ADN/normas , Animales , Pollos , Polimorfismo Conformacional Retorcido-Simple , Estándares de Referencia , Análisis de Secuencia de ADN/métodos
19.
3 Biotech ; 9(9): 332, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31475084

RESUMEN

Immunosuppression caused by avian leukemia virus J subgroup (ALV-J) infection includes atrophy or regeneration disorders of the lymphoid organs, decreased immune response, and termination of B lymphocyte maturation process and inhibition of T-lymphocyte development. The regulatory mechanism of the related resistance genes and protein expression is not clear. While searching for a molecular marker for the immune response to ALV-J infection, we detected differentially expressed proteins (DEPs) of spleens from chicken infected by ALV-J at 15th day and 30th day by the data-independent acquisition technique. Approximately 220 DEPs from the spleens of chickens infected by ALV-J were detected. To find a relatively stable biomarker molecule, we summarized the DEPs at two timepoints and selected activating signal cointegrator 1 complex subunit 3 (ASCC3), TBC1 domain family member 2 (TBC1D2), MHC class II beta chain 1 (BLB2), ensconsin (MAP7), complement component 1 Q subcomponent B chain (C1QB), and Follistatin-like 1 (FSTL1) from both comparisons for protein interaction network analysis. ASCC3, BLB2, C1QB, and FSTL1 were potential biomarkers for the complex infection mechanism of ALV-J and the dynamic immune mechanism of the body.

20.
Front Plant Sci ; 10: 374, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984224

RESUMEN

In plants, subcellular fluctuations in Ca2+ ion concentration are among the earliest responses to biotic and abiotic stresses. Calmodulin, which is a ubiquitous Ca2+ ion sensor in eukaryotes, plays a major role in translating these Ca2+ signatures to cellular responses by interacting with numerous proteins located in plasma membranes, cytoplasm, organelles and nuclei. In this report, we show that one of the Phytophthora RXLR effector, Avrblb2, interacts with calmodulin at the plasma membrane of the plant cells. Using deletion and single amino acid mutagenesis, we found that calmodulin binds to the effector domain of Avrblb2. In addition, we show that most known homologs of Avrblb2 in three different Phytophthora species interact with different isoforms of calmodulin. Type of amino acids at position 69 in Avrblb2, which determines Rbi-blb2 resistance protein-mediated defense responses, is not involved in the Avrblb2-calmodulin interaction. Using in planta functional analyses, we show that calmodulin binding to Avrblb2 is required for its recognition by Rpi-blb2 to incite hypersensitive response. These findings suggest that Avrblb2 by interacting with calmodulin interfere with plant defense associated Ca2+ signaling in plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...